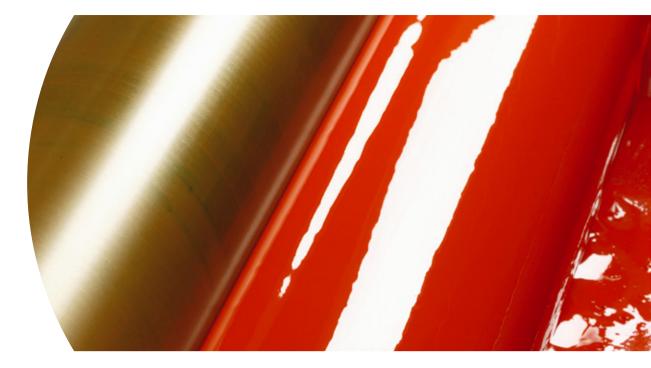


Evonik. Power to create.

Using Acrylic Resins to Enhance Properties of UV-Curing Coatings

Evonik Industries offers high-quality polymers that are suitable for modifying UV-curing coatings. UV-curing coatings, known as 100 % systems, are ideal for coating paper, wood and metal substrates, as well as plastic films. Rapidly soluble polymers are the key to success. The polymer is first dissolved in monomers. The solution thus obtained is then homogenized with oligomers, initiators, additives and optionally with pigments. After application, this liquid paint film cures within fractions of a second upon exposure to short-wave UV light. This curing process releases no volatile constituents such as solvents, and the resulting homogeneous paint film adheres mostly better than conventional coating systems.


Advantages of adding DEGALAN[®] products to UV-formulations:

- · Increased adhesion, especially on plastic and metal surfaces
- · Reduced shrinking of the coating
- Reduced cost of the formulation
- · Low increase in viscosity of the UV-coating lacquers
- · Good compatibility with oligomers

Many DEGALAN[®] types are soluble in monomers with good viscosity.

Optimal results are attained by using low molecular types containing a low proportion of methyl methacrylate. The following table shows the viscosity of DEGALAN[®] types combined with the most widely used monomers. The values are based on a 30 wt.% polymer solution and viscosity expressed in mPas.

Viscosity (mPas) of DEGALAN[®] – Types in Monomers (30 wt.%)

Monomer/DEGALAN [®]	PQ 611 N	P 28 N	PM 381 N	PM 602	N 742 N	P 24 N	64/12 N
Isobornyl acrylate	2100	4600	3800	5700	11000	8600	4500
Trimethylolpropan triacrylate	not soluble	not soluble	not soluble	not soluble	not soluble	not soluble	not soluble
Tripropylen glykol diacrylate	4600	8800	6000	9500	18300	37500	8200
Hexandiol diacrylate	950	1700	1400	2000	3200	4400	1600
Monomer/DEGALAN°	LP 64/12	LP 64/11	LP 67/11	LP 63/11	LP 65/11	MB 319	
,	LP 64/12 3600	LP 64/11	LP 67/11 not soluble	LP 63/11 700	LP 65/11	MB 319 20600	-
sobornyl acrylate		,	,	,	,		-
Monomer/DEGALAN° Isobornyl acrylate Trimethylolpropan triacrylate Tripropylen glykol diacrylate	3600	1500	not soluble	700	1200	20600	

Examples of Guideline Formulations

To improve the adhesion of UV-curing inks on plastic substrates add 10 % to 40 % of the following solution:

• 40 parts DEGALAN[®] LP 64/12

• 60 parts Tripropylene Glycol Diacrylate

Primer for BOPP-Foils:

- 20 to 40 parts DEGALAN[®] PQ 611 N
- 80 to 60 parts Hexandiol Diacrylate
- 2 to 8 parts initiator
- 0.6 parts defoamer

This information and all further technical advice is based on our present knowledge and experience. However, it implies no liability or other legal responsibility on our part, including with regard to existing third party intellectual property rights, especially patent rights. In particular, no warranty, whether express or implied, or guarantee of product properties in the legal sense is intended or implied. We reserve the right to make any changes according to technological progress or further developments. The customer is not released from the obligation to conduct careful inspection and testing of incoming goods. Performance of the product described herein should be verified by testing, which should be carried out only by qualified experts in the sole responsibility of a customer. Reference to trade names used by other companies is neither a recommendation, nor does it imply that similar products could not be used.

[®] = Registered trademark of Evonik or affiliates DEGALAN is a registered trademark of Evonik Röhm GmbH, Darmstadt, Germany

Evonik Industries AG

Kirschenallee 64293 Darmstadt Germany PHONE +49 6151 18-4716 FAX +49 6151 1884-4716 www.evonik.com degalan@evonik.com www.degalan.com

2013_07/E/4S/

Evonik. Power to create.