ETHYL ACETATE

PRODUCT IDENTIFICATION

CAS NO. 141-78-6
EINECS NO. 205-500-4
FORMULA CH₃COOC₂H₅

MOL WT. 88.11 H.S. CODE 2915.39

TOXICITY Oral rat LD50: 5620 mg/kg

SYNONYMS Acetic acid, ethyl ester; Ethyl acetic ester; Acetidin;

Acetate d'ethyle (French); Acetato de etilo (Spanish); ; Acetic ester; Acetoxyethane; Aethylacetat (German); Essigester (German); Ethyl ethanoate; hylacetaat; (Dutch); Ethyle (acetate d') (French); hylester kyseliny octove; (Czech); Etile (Acetato Di) (Italian); tan etylu (Polish);

RAW MATERIALS CLASSIFICATION

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE clear liquid
MELTING POINT -83 C
BOILING POINT 77 C
SPECIFIC GRAVITY 0.90

SOLUBILITY IN WATER Moderately soluble

На

VAPOR DENSITY 3
AUTOIGNITION 425 C

NFPA RATINGS Health: 1; Flammability: 3; Reactivity: 0

REFRACTIVE INDEX

FLASH POINT < 55 C

STABILITY Stable under normal conditions. Moisture sensitive

APPLICATIONS

Acetate is the ester that an organic group replaces a hydrogen atom in -OH group of acetic acid through reaction (typically condensation) with alcohols. Condensation is the reaction in which two molecules having -OH groups are joined with eliminating a water molecule from their OH groups. They are produced by esterification reaction from acetic acid and the corresponding alcohol in the presence of strong acids like sulfuric acid. This reaction is reversible and acetate can be hydrolyzed back into alcohol and acetic acid in the presence of strona bases or strong acid, especially at elevated temperature. The term acetate is also for the salt that one or more of the hydrogen atoms of acetic acid are replaced by one or more cations of the base, resulting in a compound containing the negative organic ion of CH3COO. Lower acetate is a non-polar to weak polar aprotic solvent which have some solubility portion in water. Its miscibility with water gets higher at elevated temperature. Higher acetates have a low solubility in water and used as extraction solvents for fine chemicals particularly for certain antibiotics. Organic acetates are good solvents for a broad range of resins as they are miscible with almost all common organic liquids. Due to their powerful solvency, high volatility and mild odor, acetates are widely used as solvents for paints, coatings, adhesives, cellulose, plastics, fats, wood stains. Additionally ether acetates series are also widely used as solvents. This surfactantlike structure provides the compatibility between water and a number of organic solvents, and the ability to couple unlike phases. The main products include ethyleneglycol monoethyl ether acetate, ethylenealycol monobutyl ether acetate, and propylenealycol monomethyl ether acetate. Aromatic acetates such as benzyl acetate are also useful solvent. Benzyl acetate has asmine like odor. Isoamyl acetate has a similar smell to both banana and pear. Acetates have

characteristic fruity odor. They are used as component of perfumes and flavorings. They are used as chemical intermediate to manufacture pharmaceuticals, synthetic flavorings, cleaners, and other organic compounds.

Acetate	FORMULA	CAS RN	B.P C
Methyl acetate	CH₃COOCH₃	79-20-9	57 - 58
Ethyl acetate	CH ₃ COOC ₂ H ₅	141-78-6	76.5 - 77.5
Propyl acetate	CH ₃ COOCH ₂ CH ₂ CH ₃	109-60-4	101 - 102
Isopropyl acetate	CH ₃ COOCH(CH ₃) ₂	108-21-4	89
Butyl acetate	CH ₃ COO(CH ₂) ₃ CH ₃	123-86-4	124 - 126
isobutyl acetate	CH ₃ COOCH ₂ CH(CH ₃) ₂	110-19-0	115 - 117
Amyl acetate	CH ₃ COO(CH ₂) ₄ CH ₃	628-63-7	149
Isoamyl acetate	CH ₃ COOCH ₂ CH ₂ CH(CH ₃) ₂	123-92-2	142
Hexyl acetate	CH ₃ COO(CH ₂) ₅ CH ₃	142-92-7	170 - 172
Heptyl acetate	CH ₃ COO(CH ₂) ₆ CH ₃	112-06-1	192 - 193
Octyl acetate	CH ₃ COO(CH ₂) ₇ CH ₃	112-14-1	205 - 211
Nonanyl acetate	CH ₃ COO(CH ₂) ₈ CH ₃	143-13-5	212
Decyl acetate	CH ₃ COO(CH ₂) ₉ CH ₃	112-17-4	272
Undecyl acetate	CH ₃ COO(CH ₂) ₁₀ CH ₃	112-19-6	269 - 271
Lauryl acetate	CH ₃ COO(CH ₂) ₁₁ CH ₃	112-66-3	265
Tridecyl acetate	CH ₃ COO(CH ₂) ₁₂ CH ₃	1072-33-9	
Myristyl acetate	CH ₃ COO(CH ₂) ₁₃ CH ₃	638-59-5	
Pentadecyl acetate	CH ₃ COO(CH ₂) ₁₄ CH ₃	629-58-3	
Cetyl acetate	CH ₃ COO(CH ₂) ₁₅ CH ₃	629-70-9	
Heptadecyl acetate	CH ₃ COO(CH ₂) ₁₆ CH ₃	822-20-8	
Stearyl acetate	CH ₃ COO(CH ₂) ₁₇ CH ₃	822-23-1	
Behenyl acetate	CH ₃ COO(CH ₂) ₂₁ CH ₃	822-26-4	
Hexacosyl acetate	C ₂₈ H ₅₆ O ₂	822-32-2	
Triacontyl acetate	C ₃₂ H ₆₄ O ₂	41755-58-2	
Benzyl acetate	CH3COOCH2C6H5	140-11-4	213 - 214
Bornyl acetate	C ₁₂ H ₂₀ O ₂	76-49-3	228 - 231
Isobornyl acetate	$C_{12}H_{20}O_2$	125-12-2	229 - 233
Cyclohexyl acetate	CH3COOC6H11	622-45-7	172 - 173

SALES SPECIFICATION

APPEARANCE	Clear liquid			
PURITY (GC)	99.0% min			
WATER	0.2% max			
	15 may			

TRANSPORTATION

PACKING 180kgs in drum
HAZARD CLASS 3 (Packing Group: II)
UN NO. 1173

OTHER INFORMATION

Hazard Symbols: F, Risk Phrases: R 11-36-66-67, Safety Phrases: 16-26-29-33

GENERAL DESCRIPTION OF SOLVENT

Solvent is a substance, usually a liquid, that acts as a dissolving agent or that is capable of dissolving another substance. In solutions of solids or gases in a liquid, the liquid is the solvent. In all other homogeneous mixtures (i.e., liquids, solids, or gases dissolved in liquids; solids in solids; and gases in gases), solvent is the component of the greatest amount. The minor proportion substances are called solutes. The solvent offers several functions during a chemical reaction. It solves not only the substance that reacts with another one to produce a new set of substances

(reactant) but also the compound that supplies the molecule, ion, or free radical, which is considered as the attacking species in a chemical reaction (reagent). The solvent is conductive to collisions between the reactants and reagents to transform the reactants to new products. The solvent also takes roll of temperature control, either to provide the energy of the colliding particles for speedy reaction and to absorb heat in exothermic reaction. The appropriate solvent should be selected based on the inactivity in the reaction conditions, dissolving the reagents as well as reactants, appropriate boiling point and easy removal at the end of the reaction.

Polarity

The most common solvent is water. Other common solvents which dissolve substances that are insoluble (or nearly insoluble) in water are acetone, alcohol, formic acid, acetic acid, formamide. BTX, carbon disulfide, diemthyl sulfoxide, carbon tetrachloride, chloroform, ether, tetrahydrofuran, furfural, hexane and turpentine. They may be classified as polar and non-polar. Polar solvents, like water, have molecules whose electric charges are unequally distributed, leaving one end of each molecule more positive than the other. Usually polar solvent has O-H bond of which water (HOH), (CH₃OH) and acetic acid (CH₃COOH) are examples. Propanol, butanol, formic acid, formamide are polar solvents. Dipolar solvents which contain a C-O double bond without O-H bond are acetone [(CH3)2C=O], ethyl acetate (CH3COOCH2CH3), methyl ethyl ketone, acetonitrile, N,N-dimethylformamide and diemthyl sulfoxide. Nonpolar solvents, like carbon tetrachloride (CCl4), benzene (C6H6), and diethyl ether (CH3CH2OCH2CH3), have molecules whose electric charges are equally distributed and are not miscible with water. Hexane, tetrahydrofuran and methylene chloride are non-polar solvents. Polar solvents are hydrophilic but non-polar solvents are lipophilic. Polar reactants will dissolve in polar solvents. Non-polar solvents dissolve non-polar compounds best. Oil and water don't mix but separate into two layers. There are three measures of the polarity as "dipole moment", "dielectric constant" and miscibility with water". Though low dipole moments and small dielectric constants indicates nonpolar solvents, sharp boundaries between polar and non-polar solvents are not available. The polarity reflects the balance between a polar component (OH) and a non-polar hydrocarbon component, existing in the same molecule. If hydrocarbon character increases relatively, the polarity decreases. On an operational basis, solvents that are miscible with water are polar.

Polar Protic and Dipolar Aprotic

Protic refers to a hydrogen atom attached to an electronegative atom. Protic solvents can donate an H+ (proton) since they contain dissociable H+, such as hydrogen attached to oxygen as in a hydroxyl group, nitrogen as in a amine group. Examples are water, methanol, ethanol, formic acid, hydrogen fluoride and ammonia. Aprotic solvents don't has O-H bond but a C=O bond typically. Examples are acetone [(CH₃)₂C=O] and ethyl acetate (CH₃COOCH₂CH₃). Polar protic solvents are useful in S_N1 reaction, while polar aprotic solvents are S_N2 reaction.

Solvents	Boiling point C	Dipole Moment	Dielectric Constant	I Density (d/mi)		
Polar Protic						
Water	100	1.85	80	0.998		
Methanol	68	1.70	33	0.791		
Ethanol	78	1.69	24.3	0.789		
n-Propanol	97	1.68	20.1	0.803		
n-Butanol	118	1.66	17.8	0.810		
Formic acid	100	1.41	58	1.21		
Acetic acid	118	1.74	6.15	1.049		
Formamide	210	3.73	109	1.134		

Polar Aprotic							
Acetone	56	2.88	20.7	0.786			
Tetrahydrofuran	66	1.63	7.52	0.886			
Methyl ethyl ketone	80	2.78	18.5	0.805			
Ethyl acetate	78	1.78	6.02	0.894			
Acetonitrile	81	3.92	36.6	0.786			
N,N-Dimethylformamide	153	3.82	38.3	0.944			
Diemthyl sulfoxide	189	3.96	47.2	1.092			
Non-Polar							
Hexane	69	-	2.02	0.655			
Benzene	80	0	2.28	0.879			
Diethyl ether	35	1.15	4.34	0.713			
Methylene chloride	40	1.60	9.08	1.326			
Carbon tetrachloride	76	0	2.24	1.594			